Medio Formula Statistiche Moving
Media mobile Questo esempio vi insegna come calcolare la media mobile di una serie storica in Excel. Una media mobile viene utilizzata per appianare le irregolarità (picchi e valli) di riconoscere facilmente le tendenze. 1. In primo luogo, consente di dare un'occhiata alla nostra serie temporali. 2. Nella scheda dati fare clic su Analisi dati. Nota: non riesci a trovare il pulsante Data Analysis Clicca qui per caricare il componente aggiuntivo Strumenti di analisi. 3. Selezionare media mobile e fare clic su OK. 4. Fare clic nella casella intervallo di input e selezionare l'intervallo B2: M2. 5. Fare clic nella casella Intervallo e digitare 6. 6. Fare clic nella casella Intervallo di output e selezionare cella B3. 8. Tracciare la curva di questi valori. Spiegazione: perché abbiamo impostato l'intervallo di 6, la media mobile è la media degli ultimi 5 punti di dati e il punto di dati corrente. Come risultato, i picchi e le valli si distendono. Il grafico mostra una tendenza all'aumento. Excel non può calcolare la media mobile per i primi 5 punti di dati, perché non ci sono abbastanza punti dati precedenti. 9. Ripetere i passaggi 2-8 per l'intervallo 2 e l'intervallo 4. Conclusione: Il più grande l'intervallo, più i picchi e le valli si distendono. Minore è l'intervallo, più le medie mobili sono per l'attuale medie dati points. Moving medie mobili con set di dati convenzionali il valore medio è spesso il primo, e uno dei più utili, statistiche di riepilogo per calcolare. Quando i dati sono in forma di una serie temporale, serie significano è una misura utile, ma non riflette la natura dinamica dei dati. I valori medi calcolati su periodi di cortocircuito, sia che precede il periodo corrente o incentrate sul periodo attuale, sono spesso più utili. Poiché tali valori medi variano, o spostare, come le mosse del periodo corrente da tempo t 2, t 3. ecc sono conosciuti come le medie mobili (MAS). Una media mobile semplice è (in genere) la media non ponderata dei k valori precedenti. Una media mobile ponderata esponenzialmente è essenzialmente lo stesso come semplice media mobile, ma con contributi alla media ponderata per la loro vicinanza al tempo corrente. Perché non ce n'è uno, ma tutta una serie di medie per ogni serie in movimento, l'insieme di Mas può si essere tracciata su grafici, ha analizzato come una serie, e utilizzato nella modellazione e previsione. Una gamma di modelli può essere costruito utilizzando medie mobili, e questi sono conosciuti come modelli MA. Se tali modelli sono combinati con autoregressivo (AR) modelli modelli compositi risultanti sono noti come modelli ARMA o ARIMA (l'io è per integrato). Semplici media mobile Da una serie temporale possono essere considerate come un insieme di valori,, t 1,2,3,4, n la media di questi valori possono essere calcolati. Se assumiamo che n è abbastanza grande, e selezionare un intero k che è molto più piccolo di n. possiamo calcolare un insieme di calze blocco, o semplici medie mobili (dell'ordine k): Ogni misura rappresenta la media dei valori dei dati in un intervallo di k osservazioni. Si noti che la prima possibile MA di ordine k GT0 è che per t k. Più in generale possiamo cadere il pedice in più nelle espressioni sopra e scrivere: Questo si afferma che la media stimata al tempo t è la media semplice del valore osservato al tempo t e le precedenti fasi k -1 tempo. Se i pesi vengono applicate che diminuire il contributo di osservazioni che sono più lontani nel tempo, la media mobile si dice che sia in modo esponenziale levigata. Le medie mobili sono spesso utilizzati come forma di previsione, per cui il valore stimato di una serie al tempo t 1, S t1. è presa come MA per il periodo fino al tempo t. per esempio. oggi stima si basa su una media di precedenti valori registrati fino ad includere ieri (per i dati di tutti i giorni). Semplici medie mobili può essere visto come una forma di lisciatura. Nell'esempio illustrato di seguito, il set di dati di inquinamento atmosferico mostrato nella introduzione a questo argomento è stato aumentato da un movimento linea 7 giorni di media (MA), mostrato qui in rosso. Come si può vedere, la linea MA appiana i picchi e depressioni nei dati e può essere molto utile per identificare tendenze. L'attaccante-calcolo della formula standard significa che i primi punti k -1 di dati non hanno alcun valore MA, ma da allora in poi i calcoli estendersi al punto di dati finale della serie. PM10 valori medi al giorno, Greenwich fonte: London Air Quality Network, londonair. org. uk Uno dei motivi per il calcolo semplici medie mobili nel modo descritto è che consente valori da calcolare per tutte le fasce orarie da tempo tk fino ad oggi, e come si ottiene una nuova misurazione per il tempo t 1, il MA per il tempo t 1 può essere aggiunto al set già calcolato. Questo fornisce una semplice procedura per set di dati dinamici. Tuttavia, ci sono alcuni problemi con questo approccio. È ragionevole sostenere che il valore medio degli ultimi 3 periodi, per esempio, deve essere posizionato al tempo t -1, non il tempo t. e per un MA su un numero pari di periodi forse dovrebbe essere posizionata a metà punto tra due intervalli di tempo. Una soluzione a questo problema è quello di utilizzare i calcoli MA centrato, in cui il MA al tempo t è la media di un insieme di valori simmetrica intorno t. Nonostante i suoi evidenti meriti, questo approccio non è generalmente utilizzato perché richiede che i dati sono disponibili per gli eventi futuri, che potrebbero non essere il caso. Nei casi in cui l'analisi è interamente di una serie esistente, l'uso di centrata Mas può essere preferibile. medie mobili semplici possono essere considerati come una forma di smoothing eliminando alcune componenti ad alta frequenza di una serie temporale ed evidenziando (ma non rimozione) tendenze in modo simile alla nozione generale di filtraggio digitale. Infatti, le medie mobili sono una forma di filtro lineare. E 'possibile applicare un calcolo media mobile ad una serie già levigata, cioè l'attenuazione o il filtraggio di una serie già levigata. Ad esempio, con una media mobile di ordine 2, possiamo considerare come siano calcolate utilizzando pesi, in modo che il MA in x 2 x 0,5 1 0,5 x 2. Analogamente, il MA in x 3 0,5 x 2 x 0,5 3. Se applicare un secondo livello di finitura o di filtraggio, abbiamo 0,5 x 2 0,5 x 3 0,5 (0,5 x 1 0,5 x 2) 0,5 (0,5 x 2 0,5 x 3) 0.25 x 1 0,5 x 2 0,25 x 3 cioè il filtraggio a 2 stadi processo (o la convoluzione) ha prodotto una simmetrica variabile ponderata media mobile, con i pesi. circonvoluzioni multipli possono produrre abbastanza complessi medie mobili ponderate, alcuni dei quali sono stati trovati di particolare utilità nei settori specializzati, come ad esempio nei calcoli di assicurazione sulla vita. Le medie mobili possono essere utilizzati per rimuovere gli effetti periodici se calcolata con la lunghezza della periodicità come noto. Ad esempio, con dati mensili variazioni stagionali spesso possono essere rimossi (se questo è l'obiettivo) si applicano con una media mobile di 12 mesi simmetrica con tutti i mesi ponderati allo stesso modo, tranne il primo e l'ultimo, che sono ponderati in base 12. Questo perché non ci sarà di 13 mesi nel modello simmetrico (ora corrente, t -. 6 mesi). Il totale è diviso per 12. Procedure simili può essere adottato alcuna periodicità ben definita. medie mobili ponderate in modo esponenziale (EWMA) con la semplice formula media mobile: tutte le osservazioni sono ugualmente ponderato. Se abbiamo chiamato questi pesi uguali, alfa t. ciascuno dei pesi k sarebbe uguale 1 k. quindi la somma dei pesi sarebbe 1, e la formula sarebbe: Abbiamo già visto che più applicazioni di questo risultato processo nei pesi diversi. Con medie mobili esponenziale ponderata il contributo al valore medio dalle osservazioni che sono più rimossi in tempo è deliberata ridotta, sottolineando in tal modo gli eventi più recenti (locali). Essenzialmente un parametro smoothing, 0LT alfa LT1, viene introdotto, e la formula rivisto per: Una versione simmetrica di questa formula sarebbe la forma: Se i pesi nel modello simmetrico vengono selezionati come i termini dei termini di espansione binomiale, (1212) 2q. che si somma a 1, e come q diventa grande, si approssimare la distribuzione normale. Questa è una forma di ponderazione kernel, con la recitazione Binominale come funzione del kernel. La convoluzione due fasi descritta nel paragrafo precedente, è proprio questa disposizione, con q 1, cedendo i pesi. In livellamento esponenziale è necessario utilizzare un insieme di pesi che somma a 1 e che riducono dimensioni geometricamente. I pesi utilizzati sono in genere di forma: Per dimostrare che questi pesi sommano a 1, prendere in considerazione l'espansione di 1 come una serie. Siamo in grado di scrivere e ampliare l'espressione tra parentesi con la formula binomiale (1- x) p. dove x (1-) e p -1, che assicura: Questo fornisce quindi una forma di ponderata media mobile della forma: Questa somma può essere scritta come una relazione di ricorrenza: il che semplifica notevolmente il calcolo, ed evita il problema che il regime ponderazione va rigorosamente infinito per i pesi sommano a 1 (per piccoli valori di alfa. questo non è tipicamente il caso). La notazione usata da diversi autori varia. Alcuni usano la lettera S per indicare che la formula è essenzialmente una variabile levigato, e scrivere: considerando che la letteratura teoria del controllo utilizza spesso Z invece di S per i valori in modo esponenziale ponderata o levigate (vedi, per esempio, Lucas e Saccucci 1990, luc1 , e il sito web del NIST per maggiori dettagli e lavorato esempi). Le formule sopra citati derivano dal lavoro di Roberts (1959, Rob1), ma Hunter (1986, HUN1) utilizza un'espressione della forma: che può essere più appropriato per l'uso in alcune procedure di controllo. Con alpha 1 la stima media è semplicemente il valore misurato (o il valore del dato precedente). Con 0,5 la stima è la media mobile semplice delle misure attuali e precedenti. In previsione modelli il valore, S t. viene spesso utilizzato come stima o un valore meteo per il periodo di tempo successivo, cioè come la stima per x al tempo t 1. Così abbiamo: Questo mostra che il valore di previsione al tempo t 1 è una combinazione della media mobile ponderata esponenzialmente precedente più un componente che rappresenta la pesata errore di predizione, epsilon. al tempo t. Assumendo una serie temporale è dato e si richiede una previsione, è richiesto un valore per alfa. Questo può essere definita sulla base dei dati esistenti, valutando la somma degli errori di previsione quadrati ottenere con diversi valori di alfa per ogni t 2,3. modificando la prima stima di essere il primo valore di dati osservati, x 1. In applicazioni di controllo il valore di alfa è importante che viene utilizzato per la determinazione dei limiti di controllo superiore e inferiore, e colpisce la tiratura media (ARL) previsto prima che questi limiti di controllo sono rotti (sotto l'ipotesi che la serie temporale rappresenta un insieme di casuale, identicamente distribuite variabili indipendenti con varianza comune). In queste circostanze la varianza della statistica di controllo: è (Lucas e Saccucci, 1990): Controllo limiti sono di solito impostati come multipli fissi di questa varianza asintotica, per esempio - 3 volte la deviazione standard. Se alfa 0,25, per esempio, ed i dati monitorati si assume di avere una distribuzione normale, N (0,1), quando nel controllo, i limiti di controllo saranno - 1.134 e il processo raggiungerà uno o altro limite in 500 passi in media. Lucas e Saccucci (1990 luc1) derivano le ARLS per una vasta gamma di valori alfa e sotto diverse ipotesi utilizzando le procedure di Markov Chain. Essi tabulare i risultati, compresa la fornitura ARLS quando la media del processo di controllo è stato spostato da un multiplo della deviazione standard. Ad esempio, con uno spostamento di 0,5 con alpha 0.25 l'ARL è inferiore a 50 fasi temporali. Gli approcci sopra descritti è noto come singolo livellamento esponenziale. le procedure sono applicate una volta alla serie tempo e poi analisi o processi di controllo vengono effettuate sul dataset lisciato risultante. Se il set di dati include una tendenza Andor componenti stagionali, a due o tre stadi di livellamento esponenziale può essere applicato come un mezzo per rimuovere (esplicitamente modellazione) questi effetti (vedi più avanti, la sezione sulle previsioni. Di seguito, e il NIST ha lavorato esempio). CHA1 Chatfield C (1975) L'analisi dei tempi della serie: teoria e pratica. Chapman and Hall, London HUN1 Hunter J S (1986) La media mobile esponenziale ponderata. J of Technology Qualità, 18, 203-210 luc1 Lucas J M, Saccucci M S (1990) esponenziale mobile ponderata sistemi basati sulla media di controllo: Proprietà e miglioramenti. Technometrics, 32 (1), 1-12 Rob1 Roberts S W (1959) controllo grafico test basati su medie mobili geometriche. Technometrics, 1, 239-250Moving media - MA Abbattere Media mobile - MA A titolo di esempio SMA, considerano un titolo con i seguenti prezzi di chiusura oltre 15 giorni: Settimana 1 (5 giorni) 20, 22, 24, 25, 23 Settimana 2 (5 giorni) 26, 28, 26, 29, 27 settimana 3 (5 giorni) 28, 30, 27, 29, 28 a MA di 10 giorni sarebbe in media i prezzi di chiusura per i primi 10 giorni come il primo punto di dati. Il punto di dati successivo sarebbe cadere il primo prezzo, aggiungere il prezzo del giorno 11 e prendere la media, e così via, come illustrato di seguito. Come osservato in precedenza, il Mas lag attuale azione di prezzo perché si basano sui prezzi passati il più a lungo il periodo di tempo per il MA, maggiore è il ritardo. Così un 200 giorni MA avrà un grado molto maggiore di ritardo di 20 giorni MA perché contiene prezzi degli ultimi 200 giorni. La lunghezza del MA da utilizzare dipende dagli obiettivi di trading, con AIC più brevi utilizzati per il trading a breve termine ea lungo termine AIC più adatto per investitori a lungo termine. Il MA 200 giorni è ampiamente seguita dagli investitori e commercianti, con interruzioni sopra e sotto questa media mobile considerati importanti segnali di trading. AdG anche impartire importanti segnali di trading per conto proprio, o quando due medie cross over. Un MA crescente indica che la sicurezza è in una tendenza rialzista. mentre un MA declino indica che è in una tendenza al ribasso. Allo stesso modo, slancio verso l'alto è confermata con un crossover rialzista. che si verifica quando un MA breve termine attraversa sopra un MA-lungo termine. spinta al ribasso è confermata con un crossover ribassista, che si verifica quando un MA breve termine incrocia al di sotto di un MA-lungo termine.
Comments
Post a Comment